
9781119093107-bc01.indd  BC1� September 15, 2015 8:00 PM

BONUS
PROJECT

1
Python’s shell isn’t the most beautiful thing in the world.
In this project, you’re going to rock a graphical user interface
(GUI) with a toolkit called Tkinter. The toolkit has pretty
much everything you could want from a GUI interface (even if
some people think it could be prettier). The skills you use with
Tkinter are skills you can use with other graphical user inter-
face toolkits.

In this project you tackle putting together a basic program with
a GUI, including opening windows, making and moving buttons
and labels, and making the computer do stuff when the user
clicks a button.

Hello GUI World!

Python For Kids For Dummies �

9781119093107-bc01.indd  BC2� September 15, 2015 8:00 PM

BC2

Make a Quick Hello GUI World!
You need to use Python (command line) for the code with the
interactive prompt >>> in this project and not the IDLE Shell
window. If you use IDLE, you won’t get the same effects. IDLE uses
Tkinter itself, and this affects how your code works in the Shell.

1.	Fire up Python (command line).

2.	Type in the following code:

>>> import Tkinter

>>> label_widget = Tkinter.Label(None, text="Hello GUI World!")

You should see a new open window, with a title ‘tk’, like the
one in Figure 11-1. The window is empty and small.

3.	Type in this code and watch your tk window:

>>> label_widget.pack()

<voiceover>Achievement unlocked: Hello World in GUI
</voiceover>

Figure 11-1: The default window is open for you.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC3� September 15, 2015 8:00 PM

BC3

Two things are probably happening right now:

✓✓ You noticed that your tk window changed from something
small (but still noticeable) into something teeny tiny and
barely big enough to fit text into.

✓✓ You’ve gone weak at the knees because you just wrote your
first GUI program in only three lines of Python code. If you
need to lie down, go ahead. When you’ve recovered from the
shock, see if you can do this in two lines of code.

Analyze Hello GUI World!
There’s not a lot to this program, but you should be able to work
out the following on your own:

✓✓ Tkinter is a module. That’s sort of easy to see because if you
use import on something then it’s a module.

✓✓ Tkinter.Label is an attribute of the Tkinter module. It’s used
with parentheses, so this means it’s either a function or a class.

That’s tee-kay-inter
Tkinter is a Python interface for a GUI toolkit called Tk. So, you pro-
nounce it tee-kay-inter. During a conference, I mispronounced it ta-kinter.
So embarrassing!

Want to know more than just how to pronounce it? Look at effbot.org
(http://effbot.org/tkinterbook) and New Mexico Tech’s Tkinter
reference (http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/
index.html).

http://effbot.org
http://effbot.org/tkinterbook/
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

Python For Kids For Dummies �

9781119093107-bc01.indd  BC4� September 15, 2015 8:00 PM

BC4
Ah ha! It has a capital letter, so it should be a class. When you
use classes with parentheses you instantiate the class — that is,
you make an instance of that class.

✓✓ label_widget has its own method called pack(). This
means label_widget is probably a custom object. That sup-
ports the theory that Tkinter.Label is a class.

The variable label_widget really does store an instance of a
label widget.

Widgets are pieces of code commonly used in GUIs. For example,
GUIs often show text in some area but don’t let the user change
that text. The label widget lets you do that. It makes it easier for
you to create different kinds of applications using the same or
similar code.

Each and every time you use a graphical interface on a computer,
you’re using widgets. They’re unavoidable. You’re so familiar with
them that you don’t notice them, just like you don’t notice the
wallpaper.

You’ve met one widget here — a label widget. You use a label
widget to show the user text or images when the user is not sup-
posed to be able to change those things.

In the window you just created, you can see a lot of widgets:

✓✓ A menu button in the top-left corner

✓✓ A title (tk)

✓✓ Three buttons: minimize, maximize, and close

You might not be able to see some of these because the window is
so small. Make it larger to see them all, like in Figure 11-2. You
could probably also call the bars at each side of the window
widgets.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC5� September 15, 2015 8:00 PM

BC5

Widgets usually look different on different operating systems —
Windows, Macintosh, Linux. But their main job is pretty much the
same no matter what. That means what you learn here while
you’re working with Tkinter works on other widget sets.

✓✓ The fact that you can’t see a widget until you call its pack
method comes back to bite you on the backside again and
again during your programming adventures, so listen up! You’ll
get bitten because you’ll think that you’ve added a widget —
but you won’t be able to see it because you haven’t packed it.
Remember that you can’t see your widgets until you pack
them (or, when you read about it later, grid them).

✓✓ The escapade with pack means that the widget exists before
you call pack. The widget exists whether you can see it or not.
When I talk about widgets, I don’t just mean the way the wid-
get looks on the screen.

✓✓ The window you created hangs around and you’re free to keep
programming in the Shell window. Try print("I can still
code here!"). In other programs, you can’t do any more
coding when Python was doing something.

Figure 11-2: Your Hello GUI World! window already has widgets. The OS gave
them to you.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC6� September 15, 2015 8:00 PM

BC6
Make sure you call the pack method of each of your widgets or
you can’t see them!

Run Hello GUI World! from a File
Now try to run Hello GUI World! from a script saved in a Python
file. You can use the IDLE Editor window for this:

1.	Create a new file called hello_gui_world.py.

2.	Type the following code into the file (the earlier code with
the >>> prompts stripped out):

import Tkinter

label_widget = Tkinter.Label(None, text="Hello GUI World!")

label_widget.pack()

3.	Save it and run it.

You get a restart and . . . nothing.

4.	Add the following line at the end:

Tkinter.mainloop()

Now when you save and run it, you get your window with the
little widget back. Hurrah! The real thing here is Tkinter.
mainloop().

The mainloop function is an infinite loop. Without it, Tkinter
won’t work. When you type your Tkinter code in a Shell, it’s sup-
posed to be interactive, so Python gets the mainloop automati-
cally going for you.

Click the close widget (the X in the top-right corner of the title
bar) to close the program.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC7� September 15, 2015 8:00 PM

BC7

Understanding mainloop
Tkinter.mainloop is the reason that the window can stay there
and you can keep typing in the Shell window. It lets more than one
thing happen at once, so you don’t get blocked.

Tkinter.mainloop takes control, constantly checking for events
and, if needed, sending those events to the program. An event is
anything to do with the program or interface, but most of the time
an event is either a keystroke or a mouse action. Like when the
user presses Q to quit, for example.

Sometimes what you think is one event is actually more than one.
(For example, a keystroke can be two separate events — a key
down and a key up.) Your Hello GUI World! processes one event in
particular — a mouse click on the close button. This, not surpris-
ingly, causes the application to close.

In pseudo code — which isn’t actual code, but an English descrip-
tion disguised as code — Tkinter.mainloop does something
like this:

def mainloop():

 while True:

 event = wait_for_event()

 if event == close_button: # someone clicked the

close button...

 clean_up_and_shut_down()

 break

 dispatch_event_to_the_relevant_handlers(event)

Basically, when you run mainloop(), Tkinter takes control of
your program! You can see from the pseudo code that the only
time it leaves mainloop is when it’s cleaning up and shutting
down or dispatching an event.

To dispatch an event means that Tkinter calls a function and
passes (a variable holding) the event as an argument to the function.
(Dispatch in plain English means to send something quickly.)

Python For Kids For Dummies �

9781119093107-bc01.indd  BC8� September 15, 2015 8:00 PM

BC8
In practice, events tend to be sent to one of your methods (a func-
tion of an instance of a class) rather than a function at the module
level. I use the word method from here on.

Once mainloop starts, you’ve got a short chance to communicate
with Tkinter. Indeed, the only time any part of your program
runs after mainloop has started is when mainloop has called
one of your program’s methods. All bow before the mighty
mainloop!

You pass control over to mainloop because mainloop has some
code to check for events without holding up the rest of the
program.

This way of making a program flow is a lot different from the pro-
gramming you did in the book projects. In those, you had a reason-
ably good idea of how the program would flow through your code
and what functions would be called in what order. But now your
code only does something when mainloop responds to an event
that it receives. Because the program’s flow is driven by the events,
this form of programming is called event-driven programming.

Make Sure Tkinter Calls You Back
Because you can’t do anything once Tkinter.mainloop takes
control, you have to make sure that Tkinter knows how and
when to get back in touch with you before that happens. This
means setting up Tkinter with all it needs to know before you
call Tkinter.mainloop.

Arranging for Tkinter to call you back is registering a callback.
(Who’da thunk it?) To register a callback, give Tkinter

✓✓ The name of the event you want it to respond to. Sample
events are <Button-1> (pressing the left mouse button) and
<Key> (pressing a key on the keyboard).

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC9� September 15, 2015 8:00 PM

BC9
✓✓ The name of the method that you want Tkinter to call you
back on. Usually you make these names yourself. The first one
you make later is called button_callback.

The method that you register, since it handles the callback that
Tkinter makes, is also called a callback (not entirely unambigu-
ous, I know).

Don’t forget. When you’re writing an application, you need to

✓✓ Think about what events — like mouse clicks and keyboard
strokes — you want your program to deal with.

✓✓ Write separate methods to deal with each event (or categories
of event).

✓✓ Register each of these methods with Tkinter. The events are
typically connected with a widget, so you tend to register the
callback at the time you make the widget instance.

✓✓ Start mainloop, then wait for Tkinter to call your callback
back.

Time to get your hands dirty.

Don’t be afraid of Doug
A phrase like “not entirely unambiguous” is a rhetorical device called lito-
tes (lie-tote-eeze). It uses a negative statement to reinforce a positive. In
the text, the word callback describes both the process of calling back and
the thing that’s called back. In reality, it is pretty ambiguous.

Monty Python have a skit about two gangsters called the Piranha Brothers.
One of those brothers, Doug, is a vicious, terrifying brute. (Grown men
have apparently torn their own heads off to avoid facing Doug.) Doug is
terrifying because of his knowledge of rhetoric (including litotes, satire,
and metaphor). Doug was apparently ignorant of synecdoche. Look it up.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC10� September 15, 2015 8:00 PM

BC10

Add a Clickable Button
You can’t register a callback on a label (possibly because labels
don’t do anything), but you can register a callback on a kind of
widget called a button. Do it in two stages. First make the button:

1.	Make a new file called tkinter_button.py.

2.	Import the Tkinter module.

import Tkinter

3.	Create an instance of Tkinter.Button and use the text
config option equal to "Click me!"

It’s the same as when you created a Label. Just replace Label
with Button:

button_widget = Tkinter.Button(None, text="Click me!")

4.	Pack the button: button_widget.pack().

5.	Call mainloop: Tkinter.mainloop().

There aren’t any callbacks at the moment but when you run it,
you get a button that asks you to click it. This is the program:

import Tkinter

button_widget = Tkinter.Button(None, text="Click me!")

button_widget.pack()

Tkinter.mainloop()

When I run it, a teeny tiny window opens up. It’s kind of hard
to find, so make sure you look for it. When you do, click it. It
looks like it pops in and out as you click it. This is the button
as it toggles (changes) from selected to deselected. Once you
notice that, you can close the window by clicking the close
widget.

Now for stage two: adding the callback.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC11� September 15, 2015 8:00 PM

BC11
6.	Create a function after the import of Tkinter, but before
button_widget is instantiated. Call it button_callback.

It takes no arguments.

def button_callback():

7.	In the function, print something.

 print("Click me again!")

8.	Go back to the line where you created button_widget and
add command=button_callback as another argument to
the Tkinter.Button.

This code is on two separate lines. You can type it as is, if you
indent the start of the second line to be under the None in the
first line (or you can try to fit it all on a single line).

button_widget = Tkinter.Button(None, text="Click me!",

  command=button_callback)

This is the code. The callback is pretty simple:

import Tkinter

def button_callback():

 print("Click me again!")

button_widget = Tkinter.Button(None, text="Click me!",

 command=button_callback)

button_widget.pack()

Tkinter.mainloop()

Run the code, find that tiny window, and click that button. You’ll
see Click me again! print in IDLE’s Shell window each time
you click the button. See Figure 11-3.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC12� September 15, 2015 8:00 PM

BC12

Change the Button to a Quit Button
You need to specifically hook up your callbacks. It isn’t good
enough to create a callback that matches what you think the call-
back should do.

To demonstrate this, you’re going to make a quit button and
corresponding quit code:

1.	Create a new file called quit_gui.py.

2.	Import the Tkinter module:

import Tkinter

3.	Create a function called quit, which takes no arguments.
Put it at the top of the file, just after the import statement.

Put it at the top so you define your functions before you call
them.

Figure 11-3: This button widget is hooked up to a callback.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC13� September 15, 2015 8:00 PM

BC13
It’s convention to put imports at the very top of the file so that
they can be found easily. At the moment, the function can be
only a print statement reminding you to fix it up later. If you
want a challenge, go back to book for Project 5 and read up on
how to use sys.exit():

def quit():

 print("Need to quit from this function")

4.	Create a button widget called quit_widget with the text
"Quit".

quit_widget = Tkinter.Button(None, text="Quit")

5.	Pack the widget.

quit_widget.pack()

6.	Call mainloop:

Tkinter.mainloop()

This is what you should get:

import Tkinter

def quit():

 print("Need to quit from this function")

quit_widget = Tkinter.Button(None, text="Quit")

quit_widget.pack()

Tkinter.mainloop()

7.	Run the code!

You should get a window that looks like Figure 11-4.

The quit function isn’t called automatically. This is because
you haven’t registered the function with Tkinter before
mainloop was called. This may seem obvious, but it’s not
enough to have a function called quit (or whatever).
Tkinter isn’t smart enough to work out that you want the
function connected with the button. You need to tell it you
want the quit function to run when the button is pressed by
using the command=quit argument.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC14� September 15, 2015 8:00 PM

BC14

8.	When you’re satisfied that Tkinter can’t work out how to
link up callbacks, you can hook up the callback explicitly:

9.	Change the button code to quit_button =
Tkinter.Button(None, text="Quit", command=quit).

There’s a standard way to exit a Tkinter application, but you
need to know a few more things before I can show you.

Changing Button Options with config
The arguments you pass by keyword when you’re instantiating a
Tkinter widget are called options. You register the callback at the
time of instantiation by passing the callback to the command option.
That means, make sure you’ve got an option command=<callback
name> like in the code Tkinter.Button(None, text="Click
me!", command=button_callback) in the following example.

Figure 11-4: Clicking does nothing. Need to expressly hook up the callback.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC15� September 15, 2015 8:00 PM

BC15
If for some reason you don’t or can’t set an option when you
instantiate a widget, you can use the widget instance’s config
method to set that option at a later time:

import Tkinter

def button_callback():

 print("Click me again!")

button_widget = Tkinter.Button(None, text="Click me!")

button_widget.pack()

button_widget.config(command=button_callback)

Tkinter.mainloop()

This code works in exactly the same way as the earlier code, even
though registering the callback is the last thing that you do (even
after packing the widget).

You can use the config method to change most aspects of your
user interface while the program is running. For example, you
could change the color of a button from green to red to show the
user that time is running out.

If you can set an option when you instantiate the widget, then
you can change that option using the config method. Sometimes
you can’t (at least not easily) set an option when the widget is cre-
ated. The config method allows you to create the widget and
then set the option later when you have the info you need.

Here’s an example using it to replace an existing callback with a
new one. You’d do this if you want to have a button do different
things (like you change the user interface halfway through your
application and reuse a button that you’ve already made).

import Tkinter

def button_callback():

 print("Click me again!")

def button_callback2():

 print("Ok, I've had enough of clicking now")

Python For Kids For Dummies �

9781119093107-bc01.indd  BC16� September 15, 2015 8:00 PM

BC16
button_widget = Tkinter.Button(None, text="Click me!",

 command=button_callback)

button_widget.pack()

button_widget.config(command=button_callback2)

Tkinter.mainloop()

In this code, the callback button_callback is initially assigned,
but later config is used to change the registration. The function
button_callback is never called (even though it’s initially
assigned), only button_callback2 is called.

You can also change callbacks midflight, so to speak. While it’s
better to have all your callbacks sorted before you call mainloop,
you can assign or change callbacks afterwards — but only from
within a callback that Tkinter actually calls.

import Tkinter

def button_callback():

 print("Click me again!")

 button_widget.config(command=button_callback2)

def button_callback2():

 print("Ok, I've had enough of clicking now")

button_widget = Tkinter.Button(None, text="Click me!",

 command=button_callback)

button_widget.pack()

Tkinter.mainloop()

Here, at the time the button is first clicked, button_callback is
registered with Tkinter. While button_callback is being pro-
cessed, the registration of button_widget is changed from button_
callback to button_callback2 (using button_widget’s config
method). After that happens, button_callback is never called
again. All later clicks go to button_callback2.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC17� September 15, 2015 8:00 PM

BC17

Create a Root Window
When you instantiate the widgets in the label example, a window
popped up that you didn’t ask for. That window is called the root
widget or root window. It’s called the root widget because pro-
grammers think of all the widgets that they create as growing on
top of one another. If one widget has another, the first widget is a
parent (or parent widget) of the second. The second widget is said
to be a child (or child widget) of the first.

Python created that window because it knew you’d need it.
(Opening a root window is also the way that Tkinter is initial-
ized.) Letting this happen is slightly poor form because you’re not
being explicit about what you want the program to do — you’re
not telling it exactly what to do.

Instead, you’re relying on a particular behavior of Tkinter. When
you cause something to happen without giving an express instruc-
tion for it you’re implicitly doing that something.

It’s generally better to be explicit. When you’re explicit, the code
tells everyone else what is happening and why.

If you explicitly create a root window then you can save a refer-
ence to it and work with that reference. (You can recover a refer-
ence to the root window from any widget attached to it. Use dir
on the widget and work out which attribute is the right one.)

You create a root window by using Tkinter.Tk(). This function
initializes a root window and returns a reference to it. You want to
catch this reference, so assign its return value to a variable.

Here’s Hello GUI World! rewritten with an explicit root window.
Note that the instantiation of the label now explicitly references
the root window as its first option:

>>> import Tkinter

>>> root_window = Tkinter.Tk()

Python For Kids For Dummies �

9781119093107-bc01.indd  BC18� September 15, 2015 8:00 PM

BC18
The default window appears at this point (and not when the label
is instantiated, like in the earlier example). You can see it in
Figure 11-5.

>>> label_widget = Tkinter.Label(root_window,

 text="Hello GUI World!")

>>> label_widget.pack()

From now on in the project, you should explicitly create a root
window. You got this!

After you have a reference to the root (or any other) window, you can
change the window’s width, height, and location by using its geometry
method. The geometry method needs to receive a string as its argu-
ment. It needs to be in the form widthxheight+xoffset+yoffset.
That’s width by height, with a horizontal (x) offset and a vertical
(y) offset and all of them as numbers. The unit is pixels. You read
more about pixels a little later. (There’s so much to cover!)

For now, when you run the following code, notice that the size and
location of the root window changes after you enter the last line:

>>> import Tkinter

>>> root_window = Tkinter.Tk()

Figure 11-5: Opening a parent, or root, window explicitly.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC19� September 15, 2015 8:00 PM

BC19
>>> label_widget = Tkinter.Label(root_window,

 text="Hello GUI World!")

>>> label_widget.pack()

>>> new_geometry_template= "%dx%d%+d%+d"

>>> new_geometry = new_geometry_template%(200,150,100,100)

>>> new_geometry

'200x150+100+100'

>>> root_window.geometry(new_geometry)

Note that new_geometry is a string. When the new geometry is
applied, you should see the window get bigger and change posi-
tion. This change isn’t animated; it happens instantaneously.

Since everything in Python is an object, it’s reasonable to assume
that widgets are objects as well. Widgets are pretty complex, as
far as objects go. Use dir(label_widget) to get a list of its
attributes. There are almost 200 of them. The attributes can give
you a lot of information that’ll help you.

Quit the Tkinter Way
To close a Tkinter application, you’re supposed to call the
destroy method on its root window. Now that you know how to
get an explicit reference to the root window, you have the power
to destroy it:

1.	Open your hello_gui_world.py program.

2.	Add a line explicitly creating a root window.

root_window = Tkinter.Tk()

3.	Make the root window the parent of each widget you
create.

For example, replace None by the variable referencing the root
widget in the widget constructors.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC20� September 15, 2015 8:00 PM

BC20
4.	Change the quit function to call the destroy() method of

the root window. It doesn’t take any arguments.

def quit():

 root_window.destroy()

Here’s the code:

import Tkinter

def quit():

 root_window.destroy()

root_window = Tkinter.Tk()

quit_button = Tkinter.Button(root_window, text="Quit",

 command=quit)

quit_button.pack()

Tkinter.mainloop()

The quit function can see the variable root_window, so it can
call all its methods.

Use Two or More Widgets at
the Same Time

When you have more than a handful of widgets, you face a new
problem — how do you arrange the widgets in the parent window
and in relation to each other?

How you arrange widgets is called the window’s geometry and it’s
managed by a geometry manager. I’m going to introduce you to
two Tkinter geometry managers — pack and grid. You’ll use
either pack or grid whenever you need lots of widgets in your
application — that is almost always.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC21� September 15, 2015 8:00 PM

BC21
Default widget packing
Type the following in your Python (command line) shell to get
instant feedback about how the widgets are being arranged:

>>> import Tkinter

>>> root_window = Tkinter.Tk()

>>> label1 = Tkinter.Label(root_window, text="Label 1")

>>> label2 = Tkinter.Label(root_window, text="Label 2")

>>> label1.pack()

The first label should appear now.

Now type this:

>>> label2.pack()

The second label appears. It’s underneath the first one. See
Figure 11-6.

Pack a widget on the bottom or
side of a window
As you add widgets, they’re packed underneath the widgets that
are already there. That’s nice if that’s where you want them, but
not so nice if you want them somewhere else.

To see how to make widgets stick to different sides, you need to
increase the size of root_window:

>>> new_geometry_template= "%dx%d%+d%+d"

>>> new_geometry = new_geometry_template%(200,200,100,100)

>>> root_window.geometry(new_geometry)

Figure 11-6: The second label appears underneath the first label.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC22� September 15, 2015 8:00 PM

BC22
You can make them hug a different wall by packing them and
specifying the side. You can repack a widget (in a different place,
for example) by just calling its pack method again. Make label2
stick to the bottom by calling its pack method and specifying the
side to be Tkinter.BOTTOM:

>>> label2.pack(side=Tkinter.BOTTOM)

The second label sticks to the bottom of the window. If you resize
and move the window manually, label1 sticks to the top and
label2 sticks to the bottom of the window.

You should be able to tell, since Tkinter.BOTTOM is in ALLCAPS,
that it’s a constant (and that it means put the widget at the bot-
tom of its parent).

Options for placing your widgets are BOTTOM, RIGHT, LEFT, and
(the default) TOP.

See Figure 11-7 and try adding some more widgets using left and
right packing:

>>> label3 = Tkinter.Label(root_window, text="Label 3")

>>> label3.pack(side=Tkinter.RIGHT)

>>> label4 = Tkinter.Label(root_window, text="Label 4")

>>> label4.pack(side=Tkinter.LEFT)

Figure 11-7: The third label is packed on the right; the fourth label is packed on
the left.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC23� September 15, 2015 8:00 PM

BC23
Use a frame for a complex arrangement
of widgets
Resize the root window and make sure the widgets stick to the
side you packed them on. Guess what? There’s no way to put a
widget next to label1:

>>> label4.pack(side=Tkinter.TOP)

This code moves label4 to the top, but it’s offset a little to the
left. See Figure 11-8. It’s offset because of how label3 was
packed. You can solve most packing problems with one or more
Tkinter.Frame widgets. Frames are invisible spaces where you
can organize widgets as a group. You can pack the frames them-
selves into the windows.

The following section explains how to arrange your widgets using
Tkinter.Frames. For example, the following steps create three
rows. The first row has three widgets, the second row has two
widgets, and the bottom row has one widget.

Figure 11-8: The fourth label is repacked at the top, but doesn’t fit right.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC24� September 15, 2015 8:00 PM

BC24
Type the code in as you do each step:

1.	Create your root window:

>>> import Tkinter

>>> root_window =Tkinter.Tk()

2.	Create three Tkinter.Frames called row1, row2, and row3
with the root window as the parent of each:

>>> row1 = Tkinter.Frame(root_window)

>>> row2 = Tkinter.Frame(root_window)

>>> row3 = Tkinter.Frame(root_window)

3.	Pack each of these Tkinter.Frame widgets in order:

>>> row1.pack()

>>> row2.pack()

>>> row3.pack()

You won’t see anything spectacular here — the widgets are
invisible, but they’re there.

4.	Create three Tkinter.Label widgets with row1 as their
parent:

>>> label1 = Tkinter.Label(row1, text="Label 1")

>>> label2 = Tkinter.Label(row1, text="Label 2")

>>> label3 = Tkinter.Label(row1, text="Label 3")

5.	Pack each of the widgets into frame row1. Use
Tkinter.RIGHT.

>>> label1.pack(side=Tkinter.RIGHT)

>>> label2.pack(side=Tkinter.RIGHT)

>>> label3.pack(side=Tkinter.RIGHT)

Notice that the widgets appear from the right in the order they
are packed.

6.	Create two more Tkinter.Label widgets but use row2 as
their parent. Pack them on the side Tkinter.LEFT.

>>> label4 = Tkinter.Label(row2, text="Label 4")

>>> label5 = Tkinter.Label(row2, text="Label 5")

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC25� September 15, 2015 8:00 PM

BC25
>>> label4.pack(side=Tkinter.LEFT)

>>> label5.pack(side=Tkinter.LEFT)

7.	Create a Tkinter.Label as your final widget, and use row3
as its parent. Pack the widget.

>>> label6 = Tkinter.Label(row3, text="Maybe this could be a

status bar?")

>>> label6.pack(side=Tkinter.BOTTOM)

When that’s all done, you should end up with something that
looks like Figure 11-9. You can see that if you’re careful, you can
create complicated layouts using Tkinter.Frame widgets to
group other widgets together.

Laying widgets in a grid
Tkinter also has a grid geometry manager. For it, use the
widget’s grid method, to say which row and column to place the
widget. You can make the widget stretch more than one row or
column.

Figure 11-9: Carefully using frames lets you make complicated arrangements.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC26� September 15, 2015 8:00 PM

BC26
In any root window, use either pack or grid, but not both. If you
use pack on a widget, don’t use grid for any other widget that
has the same root window (and vice versa).

Type the following code to create an application with gridded
widgets. You use the widget’s grid method, setting a row and
column option to locate the widget. Each row and column is a
number 0 or greater. As you add widgets, the layout grows to fit
them in:

>>> root_window = Tkinter.Tk()

>>> label1 = Tkinter.Label(root_window,text="Label 1")

>>> label2 = Tkinter.Label(root_window,text="Label 2")

>>> label3 = Tkinter.Label(root_window,text="Label 3")

>>> label4 = Tkinter.Label(root_window,text="Label 4")

>>> label1.grid(row=0,column=0) # every counter starts at

zero!

>>> label2.grid(row=0,column=1)

>>> label3.grid(row=1,column=0, columnspan = 2)

>>> label4.grid(row=0,column=2, rowspan=2, columnspan=2)

The grid method assumes that there’s a table with empty spots
to plop the widgets into. The table starts empty, but grows as it
needs to. See Figure 11-10. Take some time to see how the row=
and column= entries affect the final placement of the widgets.

✓✓ Rows are cells going across the screen. The row= config
option refers to the row number. The greater the number, the
farther down the cell is.

✓✓ Columns are cells going down the screen. The column=
config option refers to the column number. The greater the
number, the farther to the right the cell is.

✓✓ The top-left corner of the table is row=0, column=0.

✓✓ The cell beneath it is row=1,column=0.

✓✓ The cell to the right of it is row=0,column=1.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC27� September 15, 2015 8:00 PM

BC27

With the columnspan and rowspan arguments, you can make
widgets fill up more than one cell. For example, the widget label3
has columnspan=2, so it takes up a single row, but stretches
across two columns. The widget label4 stretches across two
rows (rowspan=2) and two columns (columnspan=2).

Don’t close that window yet; you use it in the next section.

Color Your Widgets
To set foreground and background colors for your widgets, use
the name of the color as a string: like “red”, “green”, and
“blue”. Like this:

>>> label1.config(background="green")

>>> label2.config(foreground="red")

>>> label3.config(foreground="white",background="black")

Figure 11-10: You can lay out widgets with the grid geometry manager.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC28� September 15, 2015 8:00 PM

BC28
You can see them in all their colorful glory in Figure 11-11. If you
hadn’t changed the foreground color of label3, you wouldn’t be
able to read the text.

For a label, the background option affects the color of the (you
guessed it) background. The foreground option is for the
widget’s text.

Tkinter only knows certain colors, but you can make different
colors by picking a number between 0 and 255 for red, green, and
blue. But there’s a catch . . . specifying them using hexadecimal
notation! (Argh!)

You don’t have to know what hexadecimal is. You just need to
know that Python can take a number and convert for you. Use the
%x format specifier in a string template to convert an integer into
a hexadecimal number.

Use the template string "#%02x%02x%02x" to convert three inte-
gers from 0 to 255 (one each for red, green, and blue in that
order) into a format that Tkinter can use.

If you know the number for red, green, and blue components — in
that order — you can use this template to write your color. For

Figure 11-11: Widgets in color. Not all the space is filled.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC29� September 15, 2015 8:00 PM

BC29
example, the color teal is a mixture of green and blue. Use this to
make it:

>>> red = 0

>>> green = 128

>>> blue = 128

You pack these into a tuple and pass them to the template to give
you a color that Tkinter can use:

>>> tk_rgb_template = "#%02x%02x%02x"

>>> tkinter_teal = tk_rgb_template%(red,green,blue)

>>> tkinter_teal

'#008080'

Now apply it to one of the widgets. See Figure 11-12.

>>> label4.config(background=tkinter_teal)

If you’re stuck for colors, plenty of Internet sites give you values.
Paint programs like Gimp also tell you the numbers of any color in
that program.

Figure 11-12: Teal is assigned to background color of widget 4.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC30� September 15, 2015 8:00 PM

BC30

Stretch Your Widgets
If you’re using the grid geometry manager Tkinter assumes that
the widget should be no bigger than it has to be. That’s why the
colored backgrounds in the grid example didn’t have color all
the way through. To have a widget fill the space it is in (the larger,
parent widget that contains it), you need to do extra work. You do
something different if you’re using the grid geometry manager
than when you are using the pack manager.

Stretch with the grid geometry
When you’re assigning a row and a column, you can also assign
what the widget sticks to. Then when the grid changes sides, the
widget itself expands or stays the same, depending on what sides
of the cell it’s supposed to stick to.

Use the sticky option to set which cell walls the widget will
stick to.

Using the window and colors from the previous section, you can
change (for example) label3 to stick to all the cell walls, like this:

>>> label3.grid(row=1,column=0, columnspan = 2,

 sticky = Tkinter.N+Tkinter.S+Tkinter.E+Tkinter.W)

You can change label4 like this. See Figure 11-13 as well:

>>> label4.grid(row=0,column=2,rowspan=2,columnspan=2,

 sticky = Tkinter.N+Tkinter.S+Tkinter.E+Tkinter.W)

The N, S, E, and W are acronyms for north, south, east, and west
(in that order). In a cell, that’s the top, bottom, right, and left
sides.

This example’s widgets stick to all four sides. You can choose
which side(s) to stick to by adding those sides together with +
like you see in the sample code. SE, SW, NE, NW, and EW also work.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC31� September 15, 2015 8:00 PM

BC31

Stretch with the pack geometry
When you use a pack geometry, you’ve got to solve the problem a
different way:

✓✓ By telling Tkinter whether the widget expands when the win-
dow it’s in is resized.

✓✓ By telling Tkinter whether the widget fills the available space
(if there is any).

1.	Type this code in your Python (command line) instance to
set up the environment:

>>> import Tkinter

>>> root_window_pack = Tkinter.Tk()

>>> label1 = Tkinter.Label(root_window_pack,text="Label 1")

>>> label1.pack()

>>> label1.config(background="green")

By now the area around the label should be green.

2.	Type the following code to move and resize the window:

>>> new_geometry_template= "%dx%d%+d%+d"

>>> new_geometry = new_geometry_template%(100,100,100,100)

>>> root_window_pack.geometry(new_geometry)

Figure 11-13: Use sticky to expand the widgets.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC32� September 15, 2015 8:00 PM

BC32
3.	Pack the label widget again, passing the option expand=1

(expand=True also works).

The widget moves to the center of the window. When a parent
widget has more space than it needs to hold its child widgets,
that extra space is shared out to those child widgets that were
packed with expand=1. The parent widget (here, root_window_
pack) has been resized so it’s bigger than necessary. When
the label is repacked, that extra space is given to the label.
Now it fills the parent widget. That’s why it’s centered.

>>> label1.pack(expand=1)

4.	Pack the label with fill=Tkinter.X.

This fills the background color horizontally across the space
assigned to the widget (as opposed to the area where the writ-
ing is). Packing with Tkinter.Y makes it fill vertically, and
Tkinter.BOTH causes the fill both horizontally and vertically.
Each of these (Tkinter.X, Tkinter.Y and Tkinter.BOTH)
is a constant in the Tkinter module:

>>> label1.pack(fill=Tkinter.X)

>>> label1.pack(fill=Tkinter.Y)

>>> label1.pack(fill=Tkinter.BOTH)

See Figure 11-14 for label1.pack(fill=Tkinter.X). See
Figure 11-15 for label1.pack(fill=Tkinter.BOTH).

It gets a little trickier when Tkinter.Frames are involved. If you
want a widget to expand, you have to make sure its parent widget,
such as a Tkinter.Frame, also expands. (This applies to all par-
ent widgets between the child widget and the root window.)

In this example, you look at similar expand and fill options, but
this time the widget (label1) is a child of another widget.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC33� September 15, 2015 8:00 PM

BC33

1.	Set up the environment:

>>> import Tkinter

>>> root_window_pack = Tkinter.Tk()

>>> frame = Tkinter.Frame(root_window_pack)

>>> label1 = Tkinter.Label(frame,text="Label 1")

The label is added as a child of the widget frame, not
root_window_pack.

Figure 11-4: The label fills the available space horizontally.

Figure 11-15: The label fills the available space both vertically and horizontally.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC34� September 15, 2015 8:00 PM

BC34
2.	Make the label’s background green, pack the frame widget

and the label widget, and resize the root window:

>>> label1.config(background="green")

>>> frame.pack()

>>> label1.pack()

>>> new_geometry = "%dx%d%+d%+d"%(100,100,100,100)

>>> root_window_pack.geometry(new_geometry)

See Figures 11-16 and 11-17.

If you set it, that extra space is allocated to frame and to label1.

>>> frame.pack(expand=1)

>>> frame.pack(fill=Tkinter.BOTH)

Figure 11-16: The label’s in the same spot and it’s linked to the frame.

Extend Tkinter with ttk
Tkinter has an extension called ttk. The ttk module is part of the stan-
dard library. It includes newer versions of the Tkinter widgets and adds
some others, including a tree view widget. To find out more, import
ttk and use your Python introspection skills!

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC35� September 15, 2015 8:00 PM

BC35

Use Dialog Boxes
A dialog box is a small window that lets users know something.
You tend to use dialog boxes (sometimes called plain old dialogs)
when the application can’t continue without information from
the user.

Message boxes that stop the main application are called blocking
or modal dialog boxes. Tkinter comes with some standard dialog
boxes — tkMessageBox (I know it’s called a message box, but
it’s a dialog box) and tkFileDialog. Each module has methods
to display dialog box variants.

tkMessageBox
This module has a variety of methods, and they all format a title
string and message string differently. The methods follow:

showinfo

showwarning

showerror

askquestion

Figure 11-17: When the frame expands, the label expands as well.

Python For Kids For Dummies �

9781119093107-bc01.indd  BC36� September 15, 2015 8:00 PM

BC36
askokcancel

askretrycancel

askyesno

askyesnocancel

Running one of these methods displays a dialog box. The user
needs to click one of the buttons for the application to keep going.

✓✓ The show methods only give an OK button. The return value
from these is always “ok”, so don’t bother capturing it.

✓✓ The ask methods provide different buttons depending on the
method. Return values from the ask methods are "yes",
"no", True, False, or None.

Here’s some sample code for each of these message boxes. Create
a new file (call it testing_dialogs.py) and put this code in it.
When it runs, you’ll see each message box option, one after
another.

If you want, you can type these directly into your Python (com-
mand line) prompt. Each one gives you a different combination of
icons and buttons. Some of them have return values of True or
False, while others return 'yes', 'no', or 'ok'. These dialog
boxes are all modal.

import Tkinter

import tkMessageBox

parent_window =Tkinter.Tk()

result = tkMessageBox.showinfo("Title","A Message")

print(result)

result = tkMessageBox.showwarning("Title","A Warning")

print(result)

result = tkMessageBox.showerror("Title","An Error")

print(result)

result = tkMessageBox.askquestion("Title", "A Question")

print(result)

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC37� September 15, 2015 8:00 PM

BC37
result = tkMessageBox.askokcancel("Title","A Question")

print(result)

result = tkMessageBox.askretrycancel("Title","A Question")

print(result)

result = tkMessageBox.askyesno("Title","A Question")

print(result)

result = tkMessageBox.askyesnocancel("Title","A Question")

print(result)

parent_window.destroy()

tkFileDialog
This module brings up a dialog box that lets users choose a file to
open (askopenfilename), to save (asksaveasfilename), or a
number of other things. By passing options to the dialog box, you
can specify a directory to start in, a file to select or suggest, and a
list of file types to display.

Save the return value you get when you call these widgets. It gives
you a path to the file that the user chose (or an empty string if
you cancel). The asksaveasfilename method warns you before
letting you choose an existing file, so that you don’t accidentally
delete it.

These dialog boxes ask the user for the name of a file to open (for
askopenfilename) or to save to (for asksaveasfilename).
Save the return value so you can use it to open the right file or
save to the right filename. The tkFileDialog just returns a file’s
name and path. It doesn’t do the saving for you. You have to do
that yourself.

This code shows each of these dialog boxes in action. When it
pops up, select a file before clicking OK. (It’s okay. This code
doesn’t change those files.) Look at the result that prints to under-
stand the format Python is returning the relevant values.

import Tkinter

import tkFileDialog

parent_window =Tkinter.Tk()

Python For Kids For Dummies �

9781119093107-bc01.indd  BC38� September 15, 2015 8:00 PM

BC38
result = tkFileDialog.askopenfilename()

print result

result = tkFileDialog.asksaveasfilename()

print result

parent_window.destroy()

A piece of code that coders aren’t supposed to use anymore is
deprecated. Code is usually deprecated because someone has
come up with a better way of doing things. You can’t just dump
the code because applications may depend upon it. It’s depre-
cated so people remove it over time.

Summary
This project is a crash course in Python GUI programming. You

✓✓ Created your first Hello GUI World! application using a label
widget.

✓✓ Met widgets and know that you must pack them before they’re
visible (when using the pack geometry manager).

✓✓ Discovered the online documentation for Tkinter — and
found out how to pronounce it!

✓✓ Used the Python command line to program Tkinter
interactively.

✓✓ Read about the root (also known as parent or top) level win-
dow and how to create it with the Tk() function.

✓✓ Read about Tkinter event management with the mainloop
function.

✓✓ Registered callbacks and bound an event to a callback.

✓✓ Saw different event categories.

� Bonus Project 1: Hello GUI World!

9781119093107-bc01.indd  BC39� September 15, 2015 8:00 PM

BC39
✓✓ Exited a Tkinter application by using the destroy method
on the root window.

✓✓ Discovered two ways to locate widgets in an application —
with the pack geometry manager or the grid geometry
manager.

✓✓ Knew not to use both grid and pack managers in the same
top-level window.

✓✓ Colored and stretched your widgets.

✓✓ Used the standard dialog boxes in tkMessageBox and
tkFileDialog.

9781119093107-bc01.indd  BC40� September 15, 2015 8:00 PM

